Learning a Distance Metric from Relative Comparisons

نویسندگان

  • Matthew Schultz
  • Thorsten Joachims
چکیده

This paper presents a method for learning a distance metric from relative comparison such as “A is closer to B than A is to C”. Taking a Support Vector Machine (SVM) approach, we develop an algorithm that provides a flexible way of describing qualitative training data as a set of constraints. We show that such constraints lead to a convex quadratic programming problem that can be solved by adapting standard methods for SVM training. We empirically evaluate the performance and the modelling flexibility of the algorithm on a collection of text documents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Kernel Metric Learning Using Relative Comparisons

We consider the problem of metric learning subject to a set of constraints on relative-distance comparisons between the data items. Such constraints are meant to reflect side-information that is not expressed directly in the feature vectors of the data items. The relative-distance constraints used in this work are particularly effective in expressing structures at finer level of detail than mus...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Active Metric Learning from Relative Comparisons

This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet (xi, xj , xk), that instance xi is more similar to xj than to xk. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003